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Boundary TSA working groups are organized

around physics issues

e PSI group (Groth) 3/2/4 WG request/12wk/32 wk
— ITER tritium inventory and carbon transport
— ITER mirror and tile gap tests

e Heat Flux Control and Fueling (Petrie) 2/1/4
— Puff and pump in ITER Hybrid and AT plasmas

e Transport & ELMs (Boedo) 1/0/2
— Poloidal dependence of transport, ELM effects
e AT Divertor (Mahdavi) 2/2/4

— Commission new divertor in AT shape
— Compare pumping with predictions
— Dome shape for ITER

(Assumes no '3C exposure in 2006)




Argon “Puff and Pump” enrichment is greater in the

closed upper divertor - ITER “dome” issue
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The Radiative Divertor was Successfully Applied to

“Hybrid” Operation
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Direct Measurements of Recycling and Impurity Influx Compared

With UEDGE Modeling are Important to Guide ITER Operation

e Deuterium neuvtral distribution can
be explained by recycling at the
divertor target plates and nevtral
transport info the main chamber

* Poloidal core plasma fueling profile Outer midplane
is determined by fueling in the view added
divertor X-point region and nevutral for 2006
leakage from divertor

e Carbon is produced mainly at the
divertor plates and walls, due to
chemical sputtering processes
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2-D DIlII-D Data Shows Deuterium and Carbon Emission

is Predominantly From The Divertor Region
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e Plan: outer midplane views, high density operation,
comparison with C-Mod picture frame data
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UEDGE/DEGAS2: Core Plasma is Fueled Through Divertor

X-Point Region and by Divertor Neuiral Leakage
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2006: New midplane views to measure
main chamber interaction, also
probes and MIMES
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13C tracer injection in DIII-D has proven to be

remarkably revealing (ITER tritium inventory)

Low deposition
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Low "°C deposition found away from divertor

. . lon beam analysis facility
= Detecting main chamber 3C University of Wisconsin

deposition requires higher sensitivity

- 13C(p.y)'*N nuclear reaction
resonance at the U. Wis. (D.G. Whyte)

- 10X lower detection limit

— If small poloidal sample s
is representative, Oxidation facility
accounts for ~1/3 of total | Un'VefS'tyo Toronto

= 13C thermal oxidation facility (J.W Davis)
at U. Toronto (J.W. Davis)

- 20 tiles planned to be tested

-
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ELMs show Peeling-Ballooning structure and expel

bursts of density at main wall

Is and Te midplane scanning probe

3D rendering of P-B mode structure
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2006: New midplane MIMES with probe capabilities
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Divertor mirror deposition is temperature sensitive (~100°)

B
 Diagnostic plasma facing mirrors are listed as T Mirtors | ertor
high-priority ITPA topic 1ome | '\ floor

— ITER divertor mirrors will have deposition ;
* Mo mirrors were exposed in the Private Flux
zone of Detached ELMing H-mode discharges T
— Room temperature (6 shots, 25 s) Thermo-
— ~100°C (not constant) (17 shots, 70 s) Sl

- Visible deposits were observed on the
: ‘ mirrors exposed at room temperature

No deposits were observed on the mirrors
exposed at elevated temperature !l

— Plan to repeat in 2006 with constant temperature
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Deposition in tile gaps is reduced at higher temperature

Tritium co-deposition with carbon in tile gaps is a B |
serious potential problem for ITER D Divertor

floor

* DIiMES sample with a simulated tile gap
2 mm wide and 15 mm near the detached OSP in two
sets of identical L-mode discharges

. First exposure was performed at room temperature,
second exposure was with sample heated to 200°C

\\

Heater

e C:D films deposited in the gap at room temperature
were of the “soft” amorphous type with D/C atomic
ratio of 0.3-0.6

 Amount of co-deposited deuterium in the heated
exposure was an order of magnitude lower than at
room temperature

e A rather high net carbon erosion rate of 3 nm/s was
measured at the sample surface in heated
exposure

2006: Repeat with controlled temperature
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DUST is identified as an important ITPA topic

e During dust DIMES experiments cameras with Top view (DiMES TV)
near IR filters observed individual dust SE—
particles moving with velocities of 10-100 m/s '

* Direction of the dust trajectories can be
explained by a combination of the ion drag,
Coulomb forces, and ion pre-sheath drifts

“Statistics” being developed
Thomson Scattering - 400/cubic meter, 80 nm average

Tangential divertor camera (LLNL) Fast-framing midplane camera (UCSD)
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ITER-relevant boundary studies with the new AT diverior

[Flexible Divertor Studies] [SN ITER shape (also DNB [ITER (scaled) ]

» Strike point on shelf * Either SN (ITER) or DN (AT) b
* Plasma sweeping shapes

for 2-D profile * New probes and views for
« Baffle allows new views this shape
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New divertor measurements in the DN AT divertor

2 Quartz
Microbalances
(Real time deposition)

' New upper

* Midplane Probe
and MIMES
(n,, T, Surfaces,

Fluetuations)

Filterscope
views

(recycling,
Impurities)

* High spatial resolution Langmuir
probes in AT strike point region
(n,, T., heat flux in shadowed areas)
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Diagnostic divertor area will have contoured tiles

New Divertor will have

contoured tiles in lower

divertor and up the
centerpost
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CD emission varies
across one tile
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ITER needs : Design Issues and ITPA tasks

* Design issues that need ITPA input (Shimada, IT)
— a. Heat load on first wall, especially due to ELMs
— b. Carbon erosion/deposition/control of tritium inventory and material choice
— C. Private region PFC and necessity of Dome
* ITPA High Priority Research Tasks and ITPA/IEA Experiments 2005-6
—d. Understand the effect of ELM/disruptions and first wall structures

— e. Improve understanding of Tritium retention & the processes that
determine it and development of efficient T removal methods

— f. Develop improved prescription of SOL perpendicular coefficients
and boundary conditions for input to BPX modeling

— g. Determine life-time of plasma facing mirrors used in optical systems

— h. Development of measurement requirements for dust

IDN‘AL FUS_\I‘D FAG!TY
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DIlI-D in the context of world tokamaks contributing to ITER

[ C-MOD }
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* Moly walls, wall coatings
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particle sources
* DN, divertor dome
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ITER site decision provides focus for DIlII-D Boundary Program

— a. Heat load on first wall, especially due to ELMs
— d. Understand the effect of ELM/disruptions and first wall structures

Continued work with new diagnostics - probes, main chamber camera
Radiative divertor in Hybrid mode

— b. Carbon erosion/deposition/control of tritium inventory and material choice
— e. Improve understanding of Tritium retention, processes, and T removal

13C experiments, DIMES, and modeling (DIVIMP, UEDGE), side lab O, bake

— g. Determine life-time of plasma facing mirrors used in optical systems
— h. Development of measurement requirements for dust

TS for dust, dust during commissioning)

— c. Private region PFC and necessity of Dome

New divertor geometry with and without dome, SN, DN - effect of drifts
— f. Develop SOL perpendicular coefficients and B.C. for input to BPX modeling
Comprehensive diagnostic set compared with computational models:
UEDGE, BOUT, DIVIMP, DEGAS-2, BOUT-Kinetic -- with particle drifts






